Тема 25. Периметр многоугольника. Площадь фигуры
Периметр многоугольника.
Многоугольник – это фигура, образованная ломаной, у которой никакие два звена не имеют общих точек, кроме концов соседних звеньев ломаной.
Периметр многоугольника – это сумма всех его сторон.
Теоретический материал для самостоятельного изучения
Мы уже знаем, из каких элементов состоят некоторые геометрические фигуры и как их изобразить на плоскости. Сегодня мы рассмотрим многоугольник.
Ломаная линия лежит в основе построения многоугольника.
Построим ломаную. Для этого отметим на плоскости несколько точек – например, пять. Соединим их так, чтобы никакие два из отрезков, имеющих общие точки, не лежали на одной прямой. Полученная фигура и будет ломаной, которую обозначают A, B, C, D, E.
Отрезки АВ, ВС, СD, DE называются звеньями ломаной. У ломаной, которую мы изобразили, четыре звена.
Если измерить длину каждого звена и найти их сумму, то получится длина ломаной.
Измерим длину ломаной.
АВ = 4 см
ВС = 2 см
СD = 3 см
DE = 5 см
Сумма длин всех звеньев равна:
АВ + ВС + СD + DЕ = 14 см – длина ломаной
Теперь нарисуем ломаную таким образом, чтобы её конец совпадал с началом. Получается замкнутая ломаная A, B, C, D, E, А.
Фигуру, образованную таким образом, называют многоугольником. То есть многоугольник – это фигура, образованная ломаной, у которой никакие два звена не имеют общих точек, кроме концов соседних звеньев ломаной.
Стоит помнить, что многоугольником является как замкнутая линия, так и эта линия вместе с плоскостью внутри неё.
Такие звенья называются сторонами многоугольника. В нашем случае это стороны АВ, ВС, СD, DE, ЕА.
Углы, образованные двумя соседними сторонами, называют углами многоугольника, а их вершины – вершинами многоугольника.
∠А, ∠В, ∠С, ∠D, ∠E – углы многоугольника
Точки А, В, С, D, E – вершины многоугольника
Кроме того, у многоугольника есть ещё и диагонали.
Диагональ – это отрезок, соединяющий две несмежные вершины многоугольника. АС, СЕ – диагонали.
Сумма всех сторон многоугольника составляет периметр многоугольника.
P = АВ + ВС + СD + DЕ + ЕА
Площадь фигуры.
Площадь - одна из количественных характеристик геометрических фигур, показывающая сколько единичных квадратов и их частей заполняет плоскую фигуру. Единичный квадрат — это квадрат со стороной, равной единице длины.
Чтобы решать задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма
Площадь квадрата равна квадрату его стороны:
Площадь прямоугольника равна произведению его длины и ширины:
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне:
Для площади треугольника есть целых 5 формул:
1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:
2) Она также равна половине произведения его сторон на синус угла между ними:
3) По формуле Герона:
4) Также площадь треугольника равна произведению его полупериметра на радиус вписанной окружности:
5) Еще один способ. Площадь треугольника равна произведению его сторон, деленному на 4 радиуса описанной окружности: